Chlorination

WAT-E2120 Physical and Chemical Treatment of Water and Waste

Pirjo Rantanen Lic. Tech.

Aalto University

Pre-reading assignment

- AWWA Staff, 2006. Water Chlorination/Chloramination Practices and Principles. AWWA Manual Series M20. American Water Works Assoc.
 2nd ed. eBook ISBN 9781613000267
 - Pages 19-29

Contents

- Mechanisms of chlorination
- Disinfection kinetics
- Chemistry of chlorine

www.livescience.com

Uses of chlorination

- Disinfection of drinking water at treatment plants (primary disinfection)
- Secondary disinfection in distribution networks
- Treated wastewater chlorination
- Shock chlorination of contaminated:
 - Distribution networks
 - Storage tanks
 - Private wells...
- Swimming pools
- Domestic cleaning

Chlorination chemicals

- Chlorine gas
- Chlorine dioxide
- Hypochlorites
 - Sodium hypochlorite (NaOCl)
 - Calcium hypochlorite (Ca(OCl)₂
- Chloramine
 - Hypochlorite + ammonium = NH₂Cl (monochloramine)

Chlorine reactions in water

Chlorine gas hydrolyzation reaction results as hypochlorous acid:

 $\begin{array}{c} Cl_2 + H_2O \leftrightarrow HOCl + H^+ + Cl^- \\ Chlorine Gas \end{array} \leftrightarrow \begin{array}{c} HOCl + H^+ + Cl^- \end{array}$

Hypochlorous acid dissociates to hypochlorite ion according to pH:

 $\underset{\text{Hypochlorous Acid}}{\text{HOCl}} \leftrightarrow \text{H}^+ + \underset{\text{Hypochlorite Ion}}{\text{OCl}^-}$

Both hypochlorous acid and hypochlorite are regarded as free chlorine, though <u>hypochlorous acid</u> is more effective disinfectant. In fact, it is the most effective chlorine form.

 $K_a = \frac{[\mathrm{H}^+][\mathrm{OCl}^-]}{[\mathrm{HOCl}]}$

pKa = 7,6, 20 °C Means that below this pH hypochlorous acid is the predominant form.

pH and hypochlorate/hypochloric acid ratio

Calculated similarly as the example with NH_3/NH_4^+ on the second lecture

Chlorination is most effective in pH 5.5-7.5

Figure 13-9

Effect of temperature and pH on fraction of free chlorine present as hypochlorous acid. (Adapted from Morris, 1966.)

Hypochlorite chlorination practices

- Liquid solution
 - Typical concentration 10 or 15% as Cl₂
 - Storage time in a cooled tank should not exceed 3- 5 months
- Typical feed 0.5 -1.0 g/m^3
 - Added dose of solution 0.5 -1 l/100 m³
- If needed, the solution is diluted for dosing
- Chemical tanks need safety basins

Hypochlorite solution decay reactions

Decay is modeled with second order kinetics

$$\frac{C}{C_0} = \frac{1}{1 - k_d C_0 t}$$

C = bleach concentration after time t, mol/L $C_0 = \text{bleach concentration at time } 0, \text{ mol/L}$ $k_d = \text{second-order decay coefficient, L/mol } \cdot s$ t = time, s

Hypochlorite solution decay

- Half-life of hypochlorite solution in storage depends on temperature
- Has to be taken into account in designing storage tanks and dosing.

Chlorine contact chambers

- It's important thet the whole volume of water in contacted with the disinfectant
- Pipe loop contactor
- Plug flow reactor

Baffled contact chambers

Properly placed baffles in the chlorien contact chambers prevent <u>short circuits</u> and <u>dead spaces</u> Baffles are walls with openings

Poor baffling

Average baffling

Good baffling

CFD modeling of baffled basins

Modeling of flow conditions, contact time profiles and concentration profiles of disinfectant, disinfection by-products, and surviving pathogens in different types of baffled contact chambers

Controlling chlorine feed

Figure 13-13

Control of chlorine gas feed rate: (a) manual control, (b) feedback or residual control, (c) feed forward control, and (d) compound loop control.

Disinfection mechanisms

- Disrupting cell permeability lead to cell death
 - Leakage of proteins, RNA, DNA
 - Decrease in potassium uptake and in protein and DNA synthesis
- Damage to nucleic acids and enzymes
- Repression of gene transcription
 - E.g. in staphylococcus aureus hypochlorous acid repressed genes controlling cell wall synthesis, protein synthesis, membrane transport and primary metabolism
- Other mechanisms

Target sites of biocides in microbial cells. Adapted from Russel et al. (1997). Amer. Soc. Microbiol. News 63: 481–487.

Biofilm growth with chlorine and without

- A biofilm protects the bacteria against chlorine.
- Notice the extra-cellular polymeric substance (EPS) in pictures c and d.
 Apparently bacteria have grown more EPS with chlorine.

Scanning electron microscopy (SEM) micrographs of the biofilm formed on cast iron coupons

Bacteria can stay viable after chlorination

- Effects of chlorine disinfection on the viability of drinking water multispecies biofilms and their ability to recover after treatment
- The epifluorescence photomicrographs show the biofilms

 (a) before treatment with 10 mg l⁻¹ sodium hypochlorite;
 (b) immediately after and
 (c) 24 h later
 - Magnification, ×400; bar = 50 µm
 - Viable cells are green and non-viable cells are red
 - The drinking water biofilm was composed of A. calcoaceticus, B. cepacia, Methylobacterium spp., M. mucogenicum, S. capsulata and Staphylococcus spp.

b

С

Log removal

"x" LOG	% Removal
0.5	68
1	90
2	99
3	99.9
4	99.99

Roughly: "Number of nines in the reduction percentage"

- Log-reductions can be summed with sequencing process units
- Example:
- 2-log removal of pathogens in filtration AND
- 1-log inactivation of pathogens in chlorination
- Results as 3-log total reduction (99.9 %)

- Ct = <u>chlorine concentration</u> as mg/l multiplied by <u>inactivation time</u> as minutes
 - 2-log removal efficiency
 - Sometimes expressed without units (=> extra carefulness needed!)
- The higher Ct the more resistant micro-organism
- Resistance to disinfection increases in the following order:
 - Non-spore forming bacteria < enteric viruses < spore-forming bacteria < protozoan cysts
- E.g. in pH 6 with hypochlorous acid:
 - E. coli, Ct = 0.04
 - Poliovirus type 1, Ct = 1.05
 - Giardia lamblia cysts, Ct = 80

Microbial inactivation by chlorine: some Ct values reported in the

literature

Microorganism	Chlorine Concentration, mg/L	Inactivation Time, min	Ct
Escherichia coli ^a	0.1	0.4	0.04
Adenovirus type 2^b			0.023-0.027
Adenovirus type 3 ^b			0.027-0.067
Poliovirus 1 ^a	1.0	1.7	1.7
Human rotaviruses ^e			5.55-5.59
Entamoeba histolytica cysts ^a	5.0	18	90
Giardia lamblia cysts ^a	1.0	50	50
-	2.0	40	80
	2.5	100	250
G. muris cysts ^a	2.5	100	250
Cryptosporidium parvum ^c			3700
Cladosporium tenuissimum ^d			71
Aspergillus terreus ^d			1404

Ct, cont'd

- Ct values of selected pathogens
- E.g. C. Parvum requires high chlorine concentrations and/or long HRT

^aConditions: 5°C; pH = 6.0 (Hoff and Akin (1986); Environ. Health Perspect. 69:7-13).

^bConditions: 4°C; pH = 7 (Page et al. (2009). Water Res. 43:2916–2926).

^cConditions: 20°C; pH = 6 (Driedger et al. (2000). Water Res. 34:3591-3597).

^dConditions: 25°C; pH = 7 (Pereira et al. (2013). Water Res. 47:517-523).

^eConditions: 20°C; pH = 7.2 (Xue et al. (2013a). Water Res. 47:3329-3338).

Effectiveness of different chlorine products

Comparative efficiency of disinfectants for the production of 99% bacterial inactivation

	Escherichia coli		Heterotrophic bacteria		c bacteria	
		Temp	CT		Temp	CT
Disinfectant	pН	(°C)	mg/min l⁻¹	pН	(°C)	mg/min l ⁻¹
Hypochlorous acid	6.0	5	0.04	7.0	1-2	0.08 ± 0.02
Hypochlorite ion	10.0	5	0.92	8.5	1-2	3.3 ± 1.0
Chlorine dioxide	6.5	20	0.18	7.0	1-2	0.13 ± 0.02
	6.5	15	0.38	8.5	1-2	0.19 ± 0.06
	7.0	25	0.28			
Monochloramine	9.0	15	64	7.0	1-2	94.0 ± 7.0
				8.5	1-2	278 ± 46.0

Source: Adapted from LeChevallier, Cawthon & Lee (1988)

- Hypochlorous acid is the most effective
- Chlorine dioxide is next effective
- After that comes hypochlorite ion
- Notice the difference of hypochlorous acid and hypochlorite ion. They are present in the same solution depending on pH
- Monochloramine is the weakest disinfectant of all the shown (least reactive)

Chlorine dioxide

- Becoming more popular because
 - ClO₂ produces less THMs and HAAs than free chlorine
 - Does not react with ammonia to form chloramines
- ClO₂ must be generated at the site:

 $2 \operatorname{NaClO}_2 + \operatorname{Cl}_2 \rightarrow 2 \operatorname{ClO}_2 + 2 \operatorname{NaCl}$

 ClO₂ is effective against bacterial and viral pathogens and protozoan parasites

Chloramine chlorination

Chloramine formation reactions with ammonia and hypochlorite:

 $\begin{array}{l} NH_3 + HOCl \rightarrow NH_2Cl + H_2O \quad (monochloramine \ formation) \\ NH_2Cl + HOCl \rightarrow NHCl_2 + H_2O \quad (dichloramine \ formation) \\ NHCl_2 + HOCl \rightarrow NCl_3 + H_2O \quad (trichloramine \ formation) \end{array}$

- Monochloramine is the desired product
- Used especially for secondary disinfection in distribution networks
 - Less reactive than chlorine => disinfection for longer HRTs in the network
- Cl₂:NH₄⁺-N mass ratio (maximum) 4.5-5 to reduce the amount of free ammonia
- Monochloramine formation depends on pH
 - Optimum pH is 8.3
- With pH below 7.5 and $Cl_2:NH_4^+-N$ mass ratio above 5
 - Dichloramine and trichloramine formation increases
 - Both have strong chlorinous taste

Distribution of chloramine formation with varying pH

Breakpoint chlorination

- If water contains ammonia, it has to be removed before chlorination (otherwise it's chloramination)
- In breakpoint chlorination chlorine is added to remove first ammonia
- The breakpoint occurs at mole ratio Cl₂:NH₃ = 1.5
- Above the mole ratio ammonium is oxidized into nitrogen gas or nitrate ion and free chlorine concentration increases

Infobox

Free chlorine = $HOCl + OCl^{-}$

Combined chlorine = $NH_2Cl + NHCl_2 + NCl_3$

Total chlorine = free chlorine + combined chlorine

Modeling bacteria inactivation: Chick's law (1908)

Harriette Chick 6.1.1875 – 9.7.1977

$r = -k_c N$

- r = reaction rate for the decrease in viable organisms with time, org/L·min
- $k_c = \text{Chick's law rate constant, min}^{-1}$
- N = concentration of organisms, org/L
- First order kinetics of the micro-organism concentration
- Temperature dependence of reaction rate coefficient (k) is calculated with Arrhenius equation (2nd lecture)
- Chlorine contact chamber volume is calculated similarly as dimensioning a reactor (2nd lecture)
 - Rate equation

- => Hydraulic retention time
- Required removal
- Reactor type

Modeling bacteria inactivation: Chick-Watson's law

Watson's law (1908) (Incl. disinfectant concentration)

$$K = C^n t$$

where

- K = constant for a given microorganism exposed to a disinfectant under specific conditions,
- C = disinfectant concentration (mg/L),
- t = time required to kill a certain percentage of the population (min), and
- n = constant also called the "coefficient of dilution."

<u>Chick-Watson model</u> (Haas & Karra, 1984) (both disinfectant and pathogen concentrations)

$$r = -\Lambda_{CW} CN$$

centrations) where $\Lambda_{CW} = \text{coefficient of specific lethality (disinfection rate constant),}$ L/mg·min

C = concentration of disinfectant, mg/L

Integrated form:

$$\ln\left(\frac{N}{N_0}\right) = -\Lambda_{\rm CW}Ct$$

No = concentration of organisms at time = 0, org/L t = time, min

Modeling bacteria inactivation: Example of Rennecker-Mariñas kinetics

<u>**Task:**</u> Apply the Rennecker-Mariñas model evaluate the inactivation of C. parvum by chlorine dioxide. Assume that N_0 was underestimated $(\ln(N/N_0) = \log(S_0) < 0)$. Use Excel spreadsheet and Solver function to determine the model parameters.

Rennecker-Mariñas model:

$$\ln\left(\frac{N}{N_0}\right) = \begin{cases} 0 & \text{for } Ct < b \\ -\Lambda_{CW}(Ct-b) & \text{for } Ct \ge b \end{cases}$$

N = Concentration of microbes at time t N_0 = Concentration of microbes at time 0 b = Lag coefficient (mg*min/l) Λ_{CW} = Chick-Watson coefficient of specific lethality (l/mg*min) C = Disinfectant concentration (mg/l) t = Time (min)

R-M model is used when there is lag in the effect of the disinfectant to the specific organism. Without lag R-M model reduces to Chick-Watson model.

С	t	lc	og(N/N ₀)
mg/l	min	d	ata
0	,96	0	-0,21
0	,96	15,5	-0,25
0	,96	30,8	-0,38
0	,96	46,1	-0,55
0	,96	61,2	-1,04
0	,96	76,2	-1,66
0	,96	91,1	-2,03
0	,48	0	-0,17
0	,48	32	-0,12
0	,48	61,6	-0,31
0	,48	92	-0,6
0	,48	122	-1,08
0	,48	152	-1,68
4	,64	0	-0,15
4	,64	2,1	0,02
4	,64	4,2	-0,11
4	,64	6,2	-0,19
4	,64	8,2	-0,29
4	,64	10	-0,56
4	,64	12	-0,79
4	,64	13,9	-1,19
4	,64	15,8	-1,47

... 22 rows of data ...

Data and modeled values

Disinfection by-products

- Formed in chlorination with organic compounds
- Trihalomethanes (THMs)
 - Carcinogenic in animal tests
 - Possible reproductive and developmental toxicity in animal tests
- Haloacetic acids (HAAs)
 - Carcinogenic in animal tests
 - Neurotoxin in higher doses in animal tests

DBPs, cont'd

DBPs formed with chlorine

Trihalomethanes	Chloroform	CHCl ₃		
	Bromodichloromethane Dibromochloromethane Bromoform Dichloroiodomethane Chlorodiiodomethane Bromochloroiodomethane Dibromoiodomethane	CHBrCl ₂ CHBr ₂ Cl CHBr ₃ CHICl ₂ CHI ₂ Cl CHBrICl CHBrICl	Miscellaneous Trihalonitromethanes	Chloral hydrat Trichloronitror (Chloropicrin) Bromodichloro Dibromochloro Tribromonitro
Haloacetic acids	Bromodiiodomethane Triiodomethane Monochloroacetic acid Dichloroacetic acid Trichloroacetic acid	CHBrI ₂ CHI ₃ CH ₂ CICOOH CHCI ₂ COOH CCI3COOH	DBPs formed with	chlorine dio>
	Bromochloroacetic acid Bromodichloroacetic acid Dibromochloroacetic acid	CHBrCICOOH CBrCI ₂ COOH CBr ₂ CICOOH	Oxyhalides	Chlorite Chlorate
Haloacetonitriles	Monobromoacetic acid Dibromoacetic acid Tribromoacetic acid Trichloroacetonitrile	CH ₂ BrCOOH CHBr ₂ COOH CBr ₃ COOH CCI ₂ C≡N	DBPs formed wit	h chloramine
	Dichloroacetonitrile Bromochloroacetonitrile	CHCl ₂ C≡N CHBrClC≡N	Nitrosamines	N-Nitrosoc
Haloketones	Dibromoacetonitrile 1,1-Dichloroacetone 1,1,1-Trichloroacetone	$CHBr_2C \equiv N$ $CHCl_2COCH_3$ CCl_2COCH_2	Cyanogen halides	Cyanoger Cyanoger
	1,1,1 monorodeetone	0013000113		

More DBPs formed with chlorine

Miscellaneous	Chloral hydrate	CCI3CH(OH)2
Trihalonitromethanes	Trichloronitromethane	CCI ₃ NO ₂
	(Chioropicrin)	
	Bromodichloronitromethane	CBrCl ₂ NO ₂
	Dibromochloronitromethane	CBr ₂ CINO ₂
	Iribromonitromethane	CBr ₃ NO ₂

xide

Oxyhalides	Chlorite	CIO2-
	Chlorate	CIO3-

е

Nitrosamines	N-Nitrosodimethylamine	(CH ₃) ₂ NNO
Cyanogen halides	Cyanogen chloride Cyanogen bromide	CICN BrCN

Approaches for reducing and controlling DBPs in drinking water

- Removal of DBP precursors (NOM, extra-cellular products of micro-organims) before disinfection
 - Removal methods: enhanced coagulation, granular activated carbon (GAC), membrane filtration
 - Some DBPs can be removed with biodegradation in GAC or sand filters
- Preozonation reduces formation of THMs, HAAs and total organic halogens (TOX)
- If THMs are formed, they can be removed with post-aeration after drinking water treatment.
- Using alternative disinfectants: E.g. Chloramine use reduces THMs.
 - Risk for other DBPs

Chlorine residual modeling

- This was topic covered in the course WAT-E2110 Design and Management of Water and Wastewater Networks
- If you did not go to that course, the slides are included as material on the current course

Shock chlorination

- Shock chlorination is needed in contamination cases
- Pathogens can be protected by biofilms
 - High chlorine concentrations and long HRT
- Example:
 - 10 mg/l Cl₂
 - 180-240 min
 - => Inactivated Yersinia pseudotuberculosis from biofilm (Räsänen et al. 2013)
- Flushing after shcok chlorination to get rid of the chlorine and possible DBPs

Most recent topics in chlorination research

- 1. DBPs
- 2. Chlorine-resistant pathogens

Digestion task

- Recognize the disinfection units of Vanhakaupunki WTP
- Why are the treatment units in this order?
 - How is the formation of DBPs taken into account?
 - Why is coagulation-flocculation in the beginning of the process train?
 - Why is chlorine added after GAC filtration?
 - Why is chloramine used for secondary disinfection?
 - Why is the pH of distributed water rather high (8.6)?

Digest with your favourite method (discussion, self-talking, walking, drinking coffee etc.)

Literature

- Available at Ebook Central:
 - AWWA Staff, 2006. Water Chlorination/Chloramination Practices and Principles. AWWA Manual Series M20. American Water Works Assoc. 2nd ed. eBook ISBN 9781613000267
 - LeChevallier, MW, Au, KK, 2004. Water treatment and pathogen control. WHO, IWA Publishing. 116 p. ISBN 92 4 1562255 2
 - Bitton, G, 2014. Microbiology of Drinking Water Production and Distribution. Wiley. 316 p. eBook ISBN 9781118744017 (Chapter 3, Chlorination, p. 65)
- Others:
 - Shock chlorination of private wells <u>http://www.water-research.net/index.php/shock-well-disinfection</u>
 - Inactivation of bacteria at epa.gov: <u>https://www.epa.gov/sites/production/files/documents/giardiaandvirusCTcalculatio</u> <u>n.pdf</u>