RO System Design

نلتقى الآن مع نبذة مختصرة عن تصميم RO System :

RO System Design :

لكى نقوم بتصميم محطة RO لتحلية الماء لابد من توافر Complete Feed Water Analysis متضمنا بطبيعة الحال قيمة TDS الخاصة بها ، لأننا سنستطيع من خلال التحليل الكامل عمل الحسابات الخاصة بتصميم Chemical Sysem ، كما ستساعدنا قيمة TDS ، وقيمة SDI إن وجدت من تصنيف المياه وبالتالى تصميم System مناسب لتحليتها.


وعودة الى ما تم ذكره فى مطلع حديثنا عن مصطلحات التحلية مايلى :
-أن هناك علاقة بين ملوحة الماء TDS ،
والضغط الأسموزى Osmotic Pressure
( OP) لها تربطها هذه العلاقة
OP = TDS × 0.01165 psi
ولتحويلها الى بار نضرب القيمة فى
0.07

ضغط التشغيل أكبر من ضعف قيمة الضغط الأسموزى .. الفرق بينهما يطلق عليه Net Driving Pressure ، معلومة TDS تعطينا انطباع سريع عن الضغط الأسموزى لها ، وقيمة تقريبية لضغط التشغيل


فمثلا” لو طلب منا تنفيذ محطة تحلية على مياه بحر ملوحتها 30000 ppm بسرعة نستطيع القول أن :

OP = 30000 × 0.01165 = 350 psi × 0.07 = 25 bar

وهذا يعنى أن ضغط التشغيل مبدئيا سيتخطى قيمة 50 bar ، هذه قيمة تقريبية ، ولكن هناك معادلات دقيقة لحسابات التصميم سيأتى شرحها فى وقتها .

– لتصميم محطة هناك Rang لعدد Pressure Vessels ممكن العمل عليه محكوما بنوعية المياه ، وقيمة SDI ، إنتاجها المطلوب ، وقيمة Recovery المناسبة ، وبالتالى قيمة Feed المطلوب ، وقيمة Brine الذى يمكن الحصول عليه عن طريق قيمة الفرق بين مياه التغذية والمياه المنتجة ، وكذا مواصفات Pressure Vessels المقترحة .


فمثلا” لو طلب منك تصميم محطة تحلية مياه بحر ملوحتها ppm 30000 طاقة 1000 م3 / يوم نقوم بالخطوات التالية :

الإنتاج اليومى 1000 م3 / يوم

– الإنتاج فى الساعة 1000 ÷ 24 = 45 م3 / ساعة

-الإنتاج بوحدة الجالون فى الدقيقة = 45 ÷ 0.2271 = 200 gpm .

– ماء التغذية المطلوب على إعتبار أن نسبة الإستفادة = 30% = 200/0.3 = 660 gpm .

قيمة مياه الريجيكت 660 – 200 = 460 gpm .

من مواصفات PV قطر 8 بوصة أن أكبر كمية مياه تغذية يمكن أن تدخلها 51 gpm كما أن أقل مياه Brine يمكن أن تخرج منها هى 19.2 gpm وعليه فإن :
Npv ≥ Qf / (qfmax / pv)
660/51 ≥ 13 pv
NPV ≤ Qb / (qbmin/pv)
Npv ≤ 460/19.2 ≤ 24 pv
وعليه فإن
13 ≤ Npv ≤ 24

هذه المعادلات نستخدمها للتأكيد على نتائج بعضها البعض هذا بالإضافة الى المعادلة التفصيلية التى سيأتى ذكرها بعد :


إستكمالا”  فى موضوع RO System Design ، وإستطعنا حساب الضغط الأسموزى ، وكونا بشكل تقريبى إنطباعا” عن ضغط التشغيل بمجرد توافر معلومة عن قيمة TDS الخاصة بمياه التغذية المطلوب تحليتها ، كما إستطعنا أيضا” حساب Rang لعدد Pressure Vessels الذى يمكن العمل خلاله محكوما” بالإنتاج المطلوب , Recovery التى يمكن العمل من خلالها ، نلتقى الآن مع شىء من التفصيل :

Qp ( GPD ) = Kw × FF × TCF × MFRC × NDP ( psi ) × St ( ft² )
Where :
Kw : Membrane Permeability =
1230 -( ßπfb ) / 20000 GPD/(psi*ft²) GFD/(psi )
Where ß : Concentration Polarization = e^0.7yi
where yi : Element Recovery = 1 – ( 1-y )^(1/n) where y : System Recovery
n : number of elements per pressure vessel
πfb : Osmotic Pressure of feed , brine Mixture
Cfb = (Cf+Cb ) / 2
Cb = Cf × 1 / (1-y)
Or Cfb = Cf ln 1/(1-y) / y
πfb = Cfb × 0.01165 psi
Or Kw = 0.061513012 – 5.0153821 * 〖10〗^(-5)* ßπfb
FF : Fouling Factor = 1 – Fouling Allowance ( FA )

( FA )

 

للغشاء الجديد = صفر ، وبالنسبة للغشاء المستعمل من ( 0.1 – 0.2 ) ، وهذا معناه أن :

( FF )

للغشاء الجديد = 1 ، وللغشاء المستعمل يتراوح ما بين ( 0.8 – 0.9 )

TCF : Temperature Correction Factor

TCF = 〖( 1.028 )〗^(t-25)

 

حيث t هى درجة حرارة الماء

MFRC : Membrane Flux Retention Co efficient

معامل إحتفاظ الغشاء بإنتاجه خلال فترة عمره
MFRC = ( θ )^(-j)
θ
قيمتها تساوى 26280 ساعة ، وهى ساعات تشغيل الغشاء بالساعات لمدة ثلاث سنوات
j
دالة فى Materials , Pressure , Temp وقيمتها تتراوح بين ( 0.02 – 0.05 )

، ومتوسط هذه القيم 0.035 ، وعليه فإن شكل المعادلة السابقة

يمكن صياغتها كما يلى :

MFRC = ( 26280 )^(-0.035)

NDP : Net Driving Pressure

وهى قيمة الفرق بين ضغط التشغيل والضغط الأسموزى للمياه المستهدف تحليتها


NDP = Pf – Pp – βπfb – 1/(2 ) ∆p fb +πp
Pf : Feed Pressure
Pp : Permeate Pressure
βπfb : Osmoic Pressure of feed brine mixure multiply in Concentration Polarization.
1 / 2 ∆p fb : half value of ∆p
Where ∆p( psi )=0.01 Qfb ( gpm ) / (NPV ) ^1.7 ×Ne / pv
πp : Osmoic Pressure of Permeate

St : Total Surface Area

وهى عبارة عن المساحة الكلية للأغشية اللازمة للإنتاج المطلوب ، وهى يمكن الحصول عليها عن طريق قسمة قيمة الإنتاج المطلوب بوحدة GPD على قيمة GFD المناسبة للماء محكوما بنوعيتها ، وقيمة SDI الخاصة بها ، وأعتقد أنها يمكن الحصول عليها فى البداية بمعلومية الإنتاج ، وفرض قيمة آمنة لــ Permeate Flux .
وإن شاء نلتقى فى اللقاء القادم مع مثال محلول لإيضاح كيفية إجراء هذه الحسابات

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

Scroll to Top